
International Journal of Robotics Research vol. 11, pp. 320-328, Aug. 1992

Recursive Formulation of Operational Space Control

K. Kreutz{Delgado

Electrical and Computer Engineering Department

University of California, San Diego

La Jolla, California 92093{0407

e-mail: kreutz@bhaskara.ucsd.edu

A. Jain, G. Rodriguez

Jet Propulsion Laboratory/California Institute of Technology

4800 Oak Grove Drive, Mail Stop 198{219

Pasadena, California 91109

e-mail: jain@telerobotics.jpl.nasa.gov

Abstract

A recently developed Spatial Operator Algebra approach to modeling and analysis of

multibody robotic systems is used to develop O(n) recursive algorithms which compute

the Operational Space mass matrix and the Operational Space coriolis/centrifugal and

gravity terms of an n{link serial manipulator. These algorithms enable an O(n) recursive

implementation of Operational Space Control.

1. Introduction

The Operational Space of a manipulator is de�ned by the con�guration space of the end{e�ector

(the standard cartesian task space). Operational Space Control (OSC) is an approach to manipu-

lator control that focuses on the dynamical behavior of a serial rigid link manipulator as seen at

the end{e�ector as it evolves in its Operational Space (Khatib 1983; Khatib 1985; Khatib 1987).

Let y(0) 2 R6 be a vector of generalized coordinates for the end{e�ector (Operational Space

coordinates) and let �(0) 2 R6 be a generalized velocity vector for the end{e�ector (the Operational

Space velocity). The argument \0" denotes the fact that our interest is with some point �xed with

respect to the \tip" of the manipulator. The linear (but con�guration dependent) kinematical

relationship that exists between �(0) and _y(0), say

�(0) = � _y(0) ; (1)

1

can always be used to restate expressions involving �(0) and _�(0) as forms involving _y(0) and �y(0)

(Khatib 83; Kreutz 89).

The associated Operational Space dynamics is

�(0) _�(0) + c(0) + g(0) = F (0) (2)

where the relationship between the end{e�ector generalized spatial force, F (0) 2 R6, and the

joint{level generalized force, T , is given by

T = J�F (0) : (3)

The term c(0) gives the coriolis/centrifugal forces and g(0) gives the gravity loading due to the

manipulator being in a 1{g uniform gravitational �eld. The \�" denotes the adjoint operation and

is equivalent to taking the transpose when J is given a matrix representation.

For a nonredundant (i.e. 6 dof) and nonsingular manipulator, �(0) is a set of generalized

velocities for the manipulator itself, and (2) describes the dynamical behavior of the entire arm.

For a redundant manipulator, �(0) cannot be a complete set of generalized velocities for the entire

manipulator and, in this case, eq. (2) describes only how the end{e�ector responds dynamically to

an applied Operational Space tip force F (0).

In the OSC approach to manipulator control, a key step is to take T = J�Fc(0) where Fc(0)

is taken to be

Fc(0) = �(0)u+ c(0) + g(0) : (4)

Assuming that �(0) is nonsingular, this results in decoupled and (almost) linearized end{e�ector

dynamics of the form
_�(0) = u : (5)

This behavior can be said to be almost linearized since the use of the kinematical relationship

between _�(0) and �y(0) (namely _�(0) = � �y(0) + _� _y(0), from (1)) can be used to obtain the

decoupled and linearized behavior �y(0) = v by an appropriate choice of u (i.e., u = � v + _� _y(0)

(Khatib 1983; Kreutz 1989)). Of course, for the special case when _�(0) = �y(0), eq. (5) is directly

equivalent to �y(0) = v = u. Once the end{e�ector obeys the decoupled form �y(0) = v, it is

straightforward to perform stable control by the use of classical control techniques. (Control of (5)

directly is discussed by (Luh, Walker, and Paul 1980) and (Wen and Kreutz-Delgado 1991).) The

use of nonlinear feedback to force the end{e�ector to obey linear dynamics is known as \feedback

linearization" or \exact linearization". From a mathematical perspective, the OSC approach is

equivalent to other proposed feedback linearizing approaches such as Resolved Acceleration Control,

Geometric Control, and Decoupled Control (Kreutz 1989).

The merit of the OSC appoach over alternative approaches to feedback linearization of the

end{e�ector (such as the Resolved Acceleration Control approach of (Luh, Walker, and Paul 1980))

2

is that knowledge of the Operational Space dynamics can give key insights into the dynamical

behavior of the end{e�ector under the inuence of external forces. This is very important for

applications involving contact between the end{e�ector and the environment, such as occurs in

hybrid force/position control, or for applications involving arti�cial potential �eld forces for the

purposes of end{e�ector collision avoidance (Khatib 1983; Khatib 1985; Khatib 1987; Khatib 1988).

Unfortunately, a major di�culty of the OSC approach as it has been used in the past has been

the need to have explicit analytical expressions for the Operational Space mass matrix �(0), the

Operational Space coriolis/centrifugal term c(0), and the Operational Space gravity loading term

g(0). Such expressions can be quite complicated | for example, Armstrong, Khatib, and Burdick

(1986) give analytical expressions for the joint space dynamical equations of motion of a PUMA

560 manipulator, expressions which are less intricate than those needed to describe the Operational

Space dynamical behavior, and even these simpler equations amply demonstrate the complexity

that can arise.

In (Rodriguez 1987; Rodriguez and Kreutz 1988; Rodriguez, Kreutz-Delgado, and Jain 1991;

Rodriguez, Jain, and Kreutz-Delgado 1989; Jain 1991), a new approach to manipulator modeling

and control, the Spatial Operator Algebra (SOA) framework for multibody system dynamics, has

been developed. This framework allows even the most general time{varying closed{chain graph

topology multibody robotic systems to be modeled and analyzed while keeping the complexity

associated with such systems to manageable proportions. SOA provides a natural hierarchy of

abstraction that enables high level analytic expressions to be easily manipulated and physically

interpreted and from which e�cient recursive algorithms are straightforward to produce. In this

paper we will use the Spatial Operator Algebra to develop an O(n) recursive algorithm which

implements OSC control, where n is the number of manipulator links. To do this, we will show

how �(0), c(0), and g(0) can each be generated by separate O(n) algorithms.1 An O(n) algorithm

for computing the Operational Space mass matrix �(0) using the Spatial Operator Algebra can be

found in (Rodriguez and Kreutz 1988). However, this paper is the �rst complete explicit statement

and description of how to perform iterative OSC control using the Spatial Operator Algebra,

including the recursive computation of the Operational Space gravity and coriolis/centrifugal terms.

To �ll in all the steps implied by the abstract tools used here would require an entire and

lengthy exposition of the Spatial Operator Algebra. Therefore, to preserve succinctness and to

focus on the problem of developing recursive OSC control algorithms, the development of this

paper has been kept intentionally terse. For further details on the use and nature of the Spatial

Operator Algebra, the reader should consult the references (Rodriguez and Kreutz 1988; Rodriguez,

Kreutz-Delgado, and Jain 1991; Rodriguez, Jain, and Kreutz-Delgado 1989; Jain 1991).

Recently, Lilly (1989) has independently developed via di�erent means (by use of a physi-

cally motivated link{to{link inductive argument) an O(n) algorithm to produce �(0) that can be

shown to be equivalent to the one derived here. Since we do not emphasize implementation details

1
It should be noted that, as is standard in the robotics literature (see, e.g., (Luh, Walker, and Paul 1980)), the

term \recursive" is taken to mean \iterative" in this paper, and the two terms are used synonomously

3

of the iterative algorithms developed in this paper, the reader is encouraged to read Lilly (1989)

where implementation issues as they pertain to the �(0) algorithm are dealt with in some detail.

In the work of Lilly (1989) and Lilly and Orin (1990) can also be found an e�cient approximate

method for computing �(0) iteratively.

2. Operational Space Dynamics

In this section we give expressions for the Operational Space quantities �(0), c(0), and g(0) in

terms of the corresponding joint space quantities. For notational convenience, we have suppressed

the notational dependence of �(0) and g(0) on con�guration, and the notational dependence of

c(0) on con�guration and velocity.

The joint{space dynamical equation of motion for a fully actuated n{link serial manipulator

can be written as

M�� + C + G = T (6)

where � denotes the joint space con�guration variable. M is the joint space mass matrix, C is the

coriolis/centrifugal forces term and G is the gravity loading term. T is the vector of joint forces. In

general the degrees{of{freedom (dofs) of the manipulator can exceed n since the joints between each

link may have more than one dof associated with them (Rodriguez, Jain, and Kreutz-Delgado 1989).

In fact, there may be as many as a full 6 dofs between two adjacent links. (This automatically takes

care of the mobile base case since the base can be viewed as link 1, with a full six dofs between

it and the ground). However, for the puposes of this paper it will not cause any harm to take

the joints to be single degree{of{freedom joints, and this fact will be assumed henceforth. Thus,

the n{link manipulator is assumed to have n fully actuated single degree-of-freedom joints so that
�� 2 Rn and T 2 Rn (and thus M 2 Rn�n). Despite this restriction to an n degree-of-freedom

manipulator, the results developed in this paper trivially extend to the multiple{dof joint case,

including the case when the joint velocities and accelerations _� and �� are replaced by generalized

joint velocities v� and _v� where there is a (con�guration dependent) linear relationship between _�

and v� (Rodriguez, Jain, and Kreutz-Delgado 1989).

The relationship between the end{e�ector generalized velocity �(0) and the joint velocity _�

is given by

�(0) = J _� ; (7)

which implies that
_�(0) = J �� + _J _� : (8)

Generally, from among the many possibilities for �(0), it is convenient to work with the end{e�ector

generalized velocity de�ned by

�(0)
�
=

�
!(0)

_x(0)

�
; (9)

4

where !(0) and _x(0) are the angular and linear velocity of the end{e�ector. When �(0) is de�ned by

(9), equation (7) gives the standard jacobian relationship between end{e�ector and joint velocities

to be found in robotics textbooks (e.g., Craig 1989) and the corresponding Jacobian is called the

\natural" or \standard" Jacobian (Khatib 1983). This important special case, where �(0) is given

by (9) and J is the standard Jacobian, is assumed to hold for the remainder of this paper. (Note,

however, that the developments given below in this section are independent of this choice.)

We will now express �(0), c(0), and g(0) of eq. (2) in terms of the joint level quantitiesM,

C and G of eq. (6), and the standard Jacobian, J , of (7). >From (6), we obtain

�� +M
�1(C + G) =M

�1T

which with (8) becomes
_�(0) + JM�1(C + G)� _J _� = JM�1T : (10)

De�ne

(0) = JM�1J� (11)

and take �(0) to be

�(0) =
(0)�1 = (JM�1J�)�1 : (12)

Premultipying (10) by �(0) results in

�(0) _�(0) + �(0)(JM�1(C + G)� _J _�) = �(0)JM�1T = F (0) (13)

using the fact that

(0)F (0) = (JM�1J�)F (0) = JM�1T ;

where F (0) is the Operational Space tip force in equations (2) and (3).

Comparison of (6) with (13), and distinguishing between velocity dependent and non{

velocity dependent terms results in the identi�cations

c(0) = �(0)(JM�1
C � _J _�) (14)

g(0) = �(0)JM�1
G : (15)

Equations (12), (14) and (15) give the desired relationships between the Operational Space and

joint space quantities.

Note that with these relationships the feedback linearizing controller (4) can be written as

T = J��(0)(u + JM�1(C + G)� _J _�) : (16)

As discussed by Kreutz (1989), an iterative implementation of (16) is provided by Resolved Ac-

celeration Control. A recursive implementation of Operational Space Control in a manner distinct

from Resolved Acceleration Control is de�ned in this paper as follows: a) Recursively compute

�(0), c(0), and g(0); b) Compute F (0) from (4) and then recursively compute T = J�F (0).

5

Possible hybrid implementations of the feedback linearizing controller (16) are a possibil-

ity, of course. For example, one could implement the feedback linearizing controller recursively at

sample rate using Resolved Acceration Control while at a slower rate �(0), c(0), and g(0) can be

recursively computed, using the algorithms developed in this paper, in order to monitor the con-

�guration dependent Operational Space dynamical properties of the manipulator for the purposes

of on{line trajectory and/or control{law modi�cation. For instance, �(0) might be monitored to

ensure that proper dynamic manipulability is maintained (see, e.g., Khatib 1987).

3. Spatial Operator Algebra

3.1 Spatial Operators for an n{Link Manipulator

Fundamental linear spatial operators associated with an n{link, n{dof manipulator are H�, M ,

and E�. They will be de�ned below. It should be noted that the link numbering scheme used in

this paper increases as one moves from the tip of the manipulator to the base, so that link 1 is the

outboard{most link and link n+1 denotes the base. Point \0" denotes the point �xed with respect

to link 1 which de�nes the end e�ector location and orientation.

The fundamental operator H� is de�ned by

H� �=diag[H�(1); � � � ;H�(n)] 2 R6n�n ; (17)

where H�(k) 2 R6 is the joint axis of the kth link (which is along the joint connecting links k and

k+1). The form of H�(k) depends on the nature of the joint k. For Example, if joint k is a revolute

joint,

H�(k) =

�
h(k)

0

�
;

where h(k) 2 R3 is the unit 3-vector along the joint axis.

The fundamental operator E� is de�ned by

E�
�
=

0
BBBBBB@

0 0 � � � 0 0

�(2; 1) 0 � � � 0 0

0 �(3; 2) � � � 0 0
...

...
. . .

...
...

0 0 � � � �(n; n� 1) 0

1
CCCCCCA
2 R6n�6n ; (18)

where �(k; k � 1) 2 R6�6 is the rigid{body force transformation Jacobian that transforms a spatial

force acting on link k at a reference point located on joint k � 1 to an equivalent force acting at a

reference point now located on joint k. Note that E� has nonzero block entries only along its �rst

block subdiagonal. The cross{link rigid{body force transformation Jacobian �(k; k � 1) has the

form

�(k; k � 1) =

�
I ~̀(k; k � 1)

0 I

�
;

6

where `(k; k� 1) 2 R3 is a 3-vector directed along link k from the reference point on joint k to the

reference point on joint k � 1 and ~̀ is de�ned by ~̀x
�
= `� x for any 3-vector x. A general interlink

rigid{body force transformation Jacobian is de�ned by

�(i; j)
�
=�(i; i � 1) � � � �(j + 1; j) =

�
I ~̀(i; j)

0 I

�
; (19)

where `(i; j) is a 3-vector directed from joint i to joint j (from reference point to reference point)

and i � j. �(i; j) for i � j is de�ned similarly. The rigid{body force transformation Jacobians

�(i; j) obey the group properties

�(i; i) = I ; �(i; j)�1 = �(j; i) ; and �(i; l)�(l; j) = �(i; j) :

The fundamental operator M is de�ned by

M
�
=diag[M(1); � � � ;M(n)] 2 R6n�6n ; (20)

where M(k) 2 R6�6, the spatial inertia of the kth link, is given by

M(k) =

�
I(k) m(k)~p(k)

�m(k)~p(k) m(k)I

�
:

The quantities m(k), m(k)p(k), and I(k) are, respectively, the 0th, 1st, and 2nd mass moments of

link k about the reference point on joint k and p(k) 2 R3 is the location of the link k mass center

with respect to the joint k reference point.

Two additional fundamental spatial operators associated with the manipulator are

B�
�
= [��(1; 0); 0; � � � ; 0] 2 R6�6n (21)

E
�
= [0; � � � ; 0; �(n+ 1; n)] 2 R6�6n : (22)

>From the fundamental quantities (17), (18), and (20) we can obtain additional linear spatial

operators associated with the manipulator. The important additional spatial operators �, P , D,

G, K, E , and are de�ned as follows:

� = (I � E�)
�1
2 R6n�6n (23)

P = E PE
�

 +M = diag[P (1); � � � ; P (n)] 2 R6n�6n (24)

D = HPH� = diag[D(1); � � � ;D(n)] 2 Rn�n (25)

G = PH�D�1 = diag[G(1); � � � ; G(n)] 2 R6n�n (26)

K = E�G 2 R6n�n (27)

E = E�(I �GH) 2 R6n�6n (28)

 = (I � E)
�1
2 R6n�6n : (29)

7

Although the de�nitions (23){(29) appear to be implicit, the block component{level interpretation

of (24) corresponds to a link{to{link iterative de�nition of P (namely the iteration (37) given below)

which allows all the quantities de�ned to be constructed in a sequential manner.

Note that P , D, and G are block diagonal. P (k) is the articulated body inertia of the kth

link (Featherstone 1987) while the nonzero scalar

D(k) = H(k)P (k)H�(k) (30)

is the projection of P (k) onto the kth joint axis. Also note that

G(k) = P (k)H�(k)D�1(k) 2 R6 : (31)

Similarly to E�, K only has non{zero block entries, fK(2; 1); � � � ;K(n; n � 1)g, along its

�rst block subdiagonal where

K(k; k � 1) = �(k; k � 1)G(k � 1) 2 R6 : (32)

E also only has non{zero block entries, f (2; 1); � � � ; (n; n � 1)g, along its �rst block

subdiagonal where

 (k; k � 1) = �(k; k � 1)[I �G(k � 1)H(k � 1)] : (33)

 (k; k � 1) is the articulated{body cross{link force propagation Jacobian for link k.

Equation (33) holds for k = 1 � � � n+ 1 and it is meaningful to de�ne the additional spatial

operator

W
�
=[0; � � � ; 0; (n + 1; n)] : (34)

A general interlink articulated{body force transformation Jacobian is de�ned by

 (i; j)
�
= (i; i � 1) � � � (j + 1; j) ; (35)

for i � j. The articulated{body force transformation Jacobians (i; j) obey the semigroup proper-

ties

 (i; i) = I ; and (i; l) (l; j) = (i; j) :

Since E� and E are both nilpotent operators, the operators � and given by (23) and (29)

can be shown to be both lower block triangular with 6 � 6 block elements. In particular � and

are given by

� =

0
BBB@

I 0 � � � 0

�(2; 1) I � � � 0
...

...
. . .

...

�(n; 1) �(n; 2) � � � I

1
CCCA and =

0
BBB@

I 0 � � � 0

 (2; 1) I � � � 0
...

...
. . .

...

 (n; 1) (n; 2) � � � I

1
CCCA : (36)

8

The action of the operator � on a composite spatial quantity y = col(y(1); � � � y(n)) 2

R6n (typically a composite spatial force) to form the composite spatial quantity z = �y, z =

col(z(1); � � � z(n)) 2 R6n, is equivalent to the following tip{to{base recursion:

z(0) = 0;

loop for k = 1 � � �n

z(k) = �(k; k � 1)z(k � 1) + y(k);

end loop;

The action of the operator results in a similar tip{to{base iteration.

Dually, the action of the operator �� on a composite spatial quantity s = col(s(1); � � � s(n))

2 R6n (typically a composite spatial acceleration or velocity) to form the composite spatial quantity

� = ��s, � = col(�(1); � � � �(n)) 2 R6n, is equivalent to the base{to{tip recursion

�(n+ 1) = 0;

loop for k = n � � � 1

�(k) = ��(k + 1; k)�(k + 1) + s(k);

end loop;

The action of the operator � results in a similar base{to{tip e�ect.

The quantities (24){(28) can be computed by a tip{to{base discrete{step riccati{like iter-

ative processing of the fundamental quantities (17){(22). This iteration is implicit in equations

(24){(28) and is given by

P (0) = 0 ; (1; 0) = �(1; 0) ; K(1; 0) = 0;

loop for k = 1 � � �n

P (k) = (k; k � 1)P (k � 1) �(k; k � 1) +M(k); (37)

D(k) = H(k)P (k)H�(k);

G(k) = P (k)H�(k)D�1(k);

K(k + 1; k) = �(k + 1; k)G(k);

 (k + 1; k) = �(k + 1; k)[I �G(k)H(k)];

end loop;

Note that D(k), G(k), (k + 1; k), and K(k + 1; k), k � 1, can be computed as soon as P (k) is

available so that the iteration (37) depends upon available quantities.

3.2 Operator Formulated Dynamics

The dynamic and kinematic expressions describing the behavior of multibody systems can be shown

to be made up of the linear spatial operators de�ned above. The spatial operators show how spatial

quantities (such as forces, velocities, and accelerations) propagate between bodies.

9

For example, the adjoint of the standard Jacobian can be written as

J� = H�B ; (38)

a factorization into spatial operators which shows how the e�ect of a manipulator tip force propa-

gates from the tip to the base and then projects onto the joint axes. This reects the fact that the

action of the lower block triangular operator � is equivalent to a tip{to{base propagation of link

interaction forces. The statement that T = J�Fc(0) = H�BFc(0) is thereby shown to be equivalent

to the recursion

f(0) = Fc(0);

loop for k = 1 � � �n

f(k) = �(k; k � 1)f(k � 1); (39)

T (k) = H(k)f(k)

end loop;

Dually, the action of the standard Jacobian J = B���H� on the joint velocities _� to form

the end{e�ector velocity �(0),

�(0) = J _� = B���H� _� ; (40)

can now be given the following interpretation in terms of the actions of the individual operator

factors. First, the action of H� on _� results in relative link velocities. Next, the action of � on

the relative link velocities H� _� results in the composite vector of link absolute spatial velocities,

V = col(V (1); � � � ; V (n)), where V (k) = col(!(k); v(k)) 2 R6 is the spatial velocity of link k with

!(k) 2 R3 and v(k) 2 R3 the angular and linear velocity of link k respectively. Finally, the action

of B� on the link absolute velocities serves to propagate V (1) to the reference point 0, producing

the end{e�ector velocity �(0). These actions are equivalent to the following base{to{tip recursion:

V (n+ 1) = 0;

loop for k = n � � � 1

V (k) = ��(k + 1; k)V (k + 1) +H�(k) _�(k); (41)

end loop;

�(0) = ��(1; 0)V (1) :

The initial condition V (n+1) = 0 reects the fact that, with no loss of generality, the base is taken

to be immobile in this paper.

Operator factorizations also exist for M, C, and G of (6):

M = H�M��H� (42)

C = H�(M��a+ b) (43)

G = H�M��E�ag (44)

10

C + G = H�(M���a+ b) (45)

where �a = a+E�ag and ag = col(0; 9:8 � eg) with eg is a unit 3{vector opposite to the direction of

uniform gravitational attraction. It is also true that

_J _� = B���a+ a(0) : (46)

The vectors a = col(a(1); � � � ; a(n)) 2 R6n, a(0) 2 R6, and b = col(b(1); � � � ; b(n)) 2 R6n

are quadratic in the link velocities and are readily computed given these velocities. The vector

b(k) 2 R6 is the \bias spatial force" associated with link k and is given by

b(k) =

�
!(k)� I(k)!(k)

m(k)!(k) � [!(k)� p(k)]

�
: (47)

The vector a(k) 2 R6, k = 0; � � � ; n, is the \bias spatial acceleration associated with link k and its

form depends upon the nature of joints. For an all-revolute manipulator, a(k) is given by

a(k) =

�
!(k + 1)� !(k)

!(k + 1)� [!(k + 1)� `(k + 1; k)]

�
: (48)

Note that the quantities a, a(0), and b are computable once the manipulator link velocities V have

been found from the O(n) base{to{tip iteration given by V = ��H� _�. This means that the link

bias accelerations and forces can be computed during the recursion (41).

The manipulator mass operator factorization, eq. (42), is referred to as the \Newton{Euler

Factorization". The operator interpretation of the Newton{Euler Factorization gives the equiv-

alence between the Newton{Euler and the Euler{Lagrange formulations of multibody dynamics

(Rodriguez, Kreutz-Delgado, and Jain 1991). An alternative mass operator factorization is given

by the \Innovations Factorization"

M = [I +H�K]D[I +H�K]� : (49)

Since it is also true that

[I +H�K]�1 = [I �H K] (50)

we have that M has the operator inversion

M
�1 = [I �H K]�D�1[I �H K] : (51)

The operator interpretation of (51) immediately results in an O(n) iterative solution to the ma-

nipulator forward dynamics problem. The Innovations Factorization (49) and the corresponding

operator inversion (51) are discussed in detail in (Rodriguez, Kreutz-Delgado, and Jain 1991; Ro-

driguez, Jain, and Kreutz-Delgado 1989; Jain 1991).

11

3.3 Operator Identities

An important identity is

�KH = KH� = �� (52)

which can be easily used to show that

[I �H K]H� = H : (53)

It is also true that

 M�� = P + ~ P + P ~�� = P + P ~�� ; (54)

where ~�
�
=� � I, ~

�
= � I, and P is given by the tip{to{base recursive implied by (24) (namely

(37)). Note that from the de�nition (23) it is easy to show that

~�
�
=�� I = �E� = E�� : (55)

A related result to (54) is that

 �H�D�1H =
+ ~ �
+
 ~ ; (56)

where

 = E
�

E +H�D�1H : (57)

Proofs of the identities (52){(57) can be found in (Rodriguez and Kreutz 1988; Rodriguez,

Kreutz-Delgado, and Jain 1991; Rodriguez, Jain, and Kreutz-Delgado; Jain 1991).

Note that the termH�D�1H in (57) is block diagonal. As a consequence
 is block diagonal,

 = diag[
(1); � � � ;
(n)] :

 can be computed via a base{to{tip recursion that is implied by eq. (57). This recursion is given

by

(n+ 1) = 0;

loop for k = n � � � 1

(k) = �(k + 1; k)
(k + 1) (k + 1; k) +H�(k)D�1(k)H(k); (58)

end loop;

Note also that given the fundamental spatial operators (17), (18), and (20), two recursions are

actually needed to compute
 since P , D, and E must be �rst computed during a tip{to{base

recursion corresponding to the iteration (37).

12

A �nal identity is given by

(I �H�D�1H P)E� =W � : (59)

To prove (59), note that

 PE� = col[0; � � � ; 0; P (n)��(n+ 1; n)]

from which it is straightforward to show that

(I �H�D�1H P)E� = col[0; � � � ; 0; (I �H�(n)G�(n))��(n+ 1; n)] :

4. Recursive Operational Space Control

The operator factorization of the standard Jacobian, eq. (38), tell us how to iteratively compute

T = J�Fc(0), given the end{e�ector force (4), via the tip{to{base iteration (39). It remains then

to show how to iteratively compute �(0), c(0), and g(0).

4.1 The Operational Space Mass Operator

Equations (11), (51), and (52) result in

(0) = B� �H�D�1H B

which with (56) immediately gives

(0) = B�
B ; (60)

since B�
 ~ = 0. The complete recursive algorithm for the computation of �(0) is given by the

combination of equations (57), (60), and (12):

�(0) =
(0)�1 ;
(0) = B�
B ;
 = E
�

E +H�D�1H : (61)

Note that since
 is block diagonal,
(0) = ��(1; 0)
(1)�(1; 0). Therefore, computing

�(0) =
(0)�1 via the recursive algorithm implied by (61) requires O(n) computations since n

iterations are needed to produce
(1) from the recursion (58) and there is a at cost associated

with inverting the 6 � 6 matrix
(0). Based on the comments following (58), it is evident that

the computation of �(0) from the fundamental quantities (17), (18), and (20) actually requires two

interative sweeps across the manipulator with a total operations count that is O(n).

4.2 The Operational Space Coriolis/Centrifugal Term

Note that equations (14), (38), (51), (46), and (53) taken together result in

c(0) = �(0)
n
B� �H�D�1H (M��a+ b)�B���a� a(0)

o
: (62)

13

>From (54) and (52),

 �H�D�1H M�� = �H�D�1H(P + P ~��)

= �H�D�1H P + �H�G� ~�� (63)

= �H�D�1H P + �H�K���

= �H�D�1H P + �� � � ;

using (55) and (27).

Equations (62) and (63) together yield

c(0) = �(0)
n
B� �[H�D�1H (Pa+ b)� a]� a(0)

o
: (64)

Equation (56) can be applied to (64) to produce alternative forms of c(0) but our focus here will

be only on (64). For purposes of computing numerical values of c(0), it is preferable to work with

the equivalent form

(0)c(0) = B� �[H�D�1H (Pa+ b)� a]� a(0) : (65)

Standard numerical techniques can be used to solve (65) once numerical values exist for
(0) and

the right hand side of (65). The recursive algorithm implied by (65) is

z(0) = 0;

loop for k = 1 � � �n

z(k) = (k; k � 1)z(k � 1) + P (k)a(k) + b(k); (66)

�(k) = H�(k)D�1(k)H(k)z(k) � a(k);

end loop;

�(n+ 1) = 0;

loop for k = n � � � 1

�(k) = �(k + 1; k)�(k + 1) + �(k); (67)

end loop;

�(0) = ��(1; 0)�(1);

SOLVE:
(0)c(0) = �(0) � a(0) : (68)

The cost associated with computing numerical values for c(0) from (65) (equivalently, from

(66){(68)) is O(n). Note that during the O(n) tip{to{base iterative sweep represented by the

operator , the quantities P , and D can be also computed since (37) and (66) can are both tip{to{

base recursions. During the subsequent O(n) base{to{tip sweep implied by the operators � and

��, the quantitiy
(0) and the right hand side of (72) can be simultaneously computed (that is,

14

the base{to{tip iterations (58) and (67) and be performed simultaneously), after which c(0) can be

solved for using a at{cost e�cient method.

In summary, to compute c(0) by the algorithm (65) (given the velocity dependent terms

a, a(0), and b) requires two sweeps along the manipulator (a tip{to{base iteration followed by a

base{to{tip iteration) and O(n) operations. Another base{to{tip O(n) iterative sweep is needed to

�rst compute the velocity dependent quantities a, a(0), and b before algorithm (65) can be applied.

Thus, most generally, three iterative O(n) sweeps across the manipulator are needed to compute

c(0). Note, however, that by using (slightly) delayed velocity dependent terms, only two sweeps

are needed since the velocity dependent terms can be computed during the second sweep of (65)

and then used during the �rst sweep at the next invocation of algorithm (65).

4.3 The Operational Space Gravity Term

Similarly to the development in the previous subsection, equations (15), (38), (51), and (53) result

in

g(0) = �(0)B� �H�D�1H M��E�ag : (69)

Equations (63) and (69) then give

g(0) = �(0)B�
n
�� � �(I �H�D�1H P)

o
E�ag ; (70)

which with identity (59) results in

g(0) = �(0)B�(��E� � �W �)ag : (71)

An equivalent statement, appropriate for obtaining numerical values of g(0), is

(0)g(0) = B�(��E� � �W �)ag : (72)

The recursive equivalent to (72) is given by

�(n+ 1) = ag ; �(n+ 1) = ag;

loop for k = n � � � 1

�(k) = ��(k + 1; k)�(k + 1); (73)

�(k) = �(k + 1; k)�(k + 1);

end loop;

SOLVE:
(0)g(0) = ��(1; 0)(�(1) � �(1)) : (74)

Note that there is no need to process velocity dependent terms in order to compute g(0).

Therefore, to compute g(0) from the fundamental quantities (17), (18), (20), (21), and (22) requires

no more than two O(n) iterative sweeps along the manipulator. A tip{to{base sweep to compute

15

the quantities (23){(29) and (34), followed by a base{to{tip sweep to simultaneously compute
(0)

from (61) while performing the iteration implied by (72).

Finally, note that if only the sum c(0) + g(0) is needed, rather than the separate quantities

c(0) and g(0), then there is no need to implement algorithm (72) at all since, with a slight modi�-

cation, algorithm (65) alone can be used to obtain c(0) + g(0). Comparison of (43) to (45) and a

reconsideration of the derivation of (65) shows that c(0)+g(0) can be obtained from algorithm (65)

(equivalently, from the iterations (66) and (67)) by use of the reassignment a! �a = a+E�ag. This

corresponds to the simple reassignment a(n) ! a(n) + ��(n + 1; n)ag, showing that the iteration

(66) is slightly modi�ed only when k = n, while the iteration (67) is not a�ected at all.

5. Conclusions

The algorithm (61) enables
(0) and �(0) =
(0)�1 to be computed via two O(n) iterative sweeps

of the manipulator. Algorithm (72) allows g(0) to also be computed via two O(n) iterative sweeps

across the manipulator. Assuming the availability of the velocity dependent terms a, a(0), and

b, algorithm (65) computes the quantity c(0) (or, as discussed at the end of Subsection 4.3, the

quantity c(0)+ g(0)) at the cost of two O(n) iterative sweeps of the manipulator. These algorithms

can be run simultanously to produce �(0), c(0) g(0), and Fc(0) of (4) as the output of a two{sweep

O(n) iterative procedure (assuming the availability of the velocity dependent terms). As discussed

at the end of Subsection 4.2, generally an additional O(n) iterative sweep is needed to compute the

velocity dependent terms, but if a slight time delay can be accepted in the values of these terms,

the need for an additional distinct sweep can be avoided.

Once Fc(0) is available a �nal O(n) tip{to{base iterative sweep is required to compute the

joint{level control forces T = J�Fc(0) via the recursion (39). However, if slightly delayed values

of Fc(0) can be tolerated, this last sweep can be merged with the tip{to{base sweep of the c(0)

algorithm (65). The overall Operational Space Control algorithm therefore requires at most four

distinct sweeps across the manipulator. As few as two distinct sweeps (keeping the distinction

between base-to-tip and tip-to-base sweeps) will su�ce when delayed values can be tolerated.

Acknowledgement

The work reported here has been partially performed at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the National Aeronautics and Space Administration.

K. Kreutz{Delgado was also supported by NSF Presidential Young Investigator Award No. IRI-

9057631 and California Space Institute grant No. CS{22{90.

16

References

[1] Armstrong, B., Khatib, O., and Burdick, J. 1986 (April 7-10 1986, San Fransico). \The Explicit

Dynamic Model and Inertial Parameters of the PUMA 560 Arm", Proc. 1986 International

Conf. Robotics and Automation. Washington: IEEE Computer Society Press, pp. 510-518.

[2] Craig, J.J. 1989. Introduction to Robotics, 2nd Edition. Reading: Addison{Wesley.

[3] Featherstone, R. 1987. Robot Dynamics Algorithms. Boston: Kluwer.

[4] Jain, A. 1991. Uni�ed Formulation of Dynamics for Serial Rigid Multibody Systems. J. Guid-

ance, Control and Dynamics. 14(3):531-542.

[5] Khatib, O. 1983 (Dec. 15{20 1983, New Delhi). Dynamic Control of Manipulators in Opera-

tional Space. Proc. 6th CISM{IFToMM Congress on Theory of Machines and Mechanisms.

[6] Khatib, O. 1985. The Operational Space Formulation in the Analysis, Design, and Control of

Robot Manipulators. Proc. 3rd International Symposium Robotics Research. Cambridge: MIT

Press, pp. 103{110.

[7] Khatib, O. 1987. A Uni�ed Approach for Motion and Force Control of Robot Manipulators:

the Operational Space Formulation. IEEE J. Robotics and Automation. RA-3:43{53.

[8] Khatib, O. 1988. Object Manipulation in a Multi{E�ector Robot System. Proceedings 4th

International Symposium Robotics Research. Cambridge: MIT Press, pp. 137{144.

[9] Kreutz, K. 1989. On Manipulator Control by Exact Linearization. IEEE Trans. Automatic

Control. TAC-34(7):763{767.

[10] Lilly, K.W. 1989. E�cient Dynamic Simulation of Multiple Chain Robotic Systems. PH.D.

thesis, Ohio State University, Department of Electrical Engineering.

[11] Lilly, K.W., and Orin, D.E. 1990 (May 13-18 1990, Cincinnati). \E�cient O(N) Computa-

tion of the Operational Space Mass Matrix", Proc. 1990 International Conf. Robotics and

Automation. Washington: IEEE Computer Society Press, pp. 1014-1019.

[12] Luh, J.Y.S., Walker, M.W., and Paul, R.P.C. 1980. On{line Computational Scheme for Me-

chanical Manipulators. ASME Journal of Dynamical Systems, Measurement, and Control.

25:468{474.

[13] Rodriguez, G. 1987. Kalman Filtering, Smoothing, and Recursive Robot Arm Forward and

Inverse Dynamics. IEEE Journal of Robotics and Automation. RA-3(6):624-639.

[14] Rodriguez, G., Jain, A., and Kreutz-Delgado, K. 1989. Spatial Operator Algebra Framework

for Multibody System Dynamics. J. Astronautical Sciences. 40(1).

[15] Rodriguez, G., and Kreutz, K. 1988. Recursive Mass Matrix Factorization and Inversion: An

Operator Approach to Open{ and Closed{Chain Multibody Dynamics. Pasadena: NASA/Jet

Propulsion Laboratory Publication No. 88-11.

17

[16] Rodriguez, G., Kreutz-Delgado, K., and Jain, A. 1991. A Spatial Operator Algebra for Ma-

nipulator Modeling and Control. International Journal of Robotics Research. 10(4):371{381.

[17] Wen, J. and Kreutz{Delgado, K. 1991. The Attitude Control Problem. IEEE Transactions on

Automatic Control. 36(10):1148{1162.

18

